1

Fig. 3
Fig. 3 shows the graph of $y=\mathrm{f}(x)$. Draw the graphs of the following.
(i) $y=\mathrm{f}(x)-2$
(ii) $y=\mathrm{f}(x-3)$

Fig. 11
Fig. 11 shows a sketch of the curve with equation $y=(x-4)^{2}-3$.
(i) Write down the equation of the line of symmetry of the curve and the coordinates of the minimum point.
(ii) Find the coordinates of the points of intersection of the curve with the x-axis and the y-axis, using surds where necessary.
(iii) The curve is translated by $\binom{2}{0}$. Show that the equation of the translated curve may be written as $y=x^{2}-12 x+33$.
(iv) Show that the line $y=8-2 x$ meets the curve $y=x^{2}-12 x+33$ at just one point, and find the coordinates of this point.

Fig. 12
Fig. 12 shows the graph of $y=\frac{1}{x-2}$.
(i) Draw accurately the graph of $y=2 x+3$ on the copy of Fig. 12 and use it to estimate the coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=2 x+3$.
(ii) Show algebraically that the x-coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=2 x+3$ satisfy the equation $2 x^{2}-x-7=0$. Hence find the exact values of the x-coordinates of the points of intersection.
(iii) Find the quadratic equation satisfied by the x-coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=-x+k$. Hence find the exact values of k for which $y=-x+k$ is a tangent to $y=\frac{1}{x-2}$. [4]

Fig. 7
Fig. 7 shows the graph of $y=g(x)$. Draw the graphs of the following.
(i) $y=\mathrm{g}(x)+3$
(ii) $y=g(x+2)$

5 The point $\mathrm{P}(5,4)$ is on the curve $y=\mathrm{f}(x)$. State the coordinates of the image of P when the graph of $y=\mathrm{f}(x)$ is transformed to the graph of
(i) $y=\mathrm{f}(x-5)$,
(ii) $y=\mathrm{f}(x)+7$.

6 (i) Describe fully the transformation which maps the curve $y=x^{2}$ onto the curve $y=(x+4)^{2}$.
(ii) Sketch the graph of $y=x^{2}-4$.

7 (i) Find the equation of the line passing through $\mathrm{A}(-1,1)$ and $\mathrm{B}(3,9)$.
(ii) Show that the equation of the perpendicular bisector of AB is $2 y+x=11$.
(iii) A circle has centre $(5,3)$, so that its equation is $(x-5)^{2}+(y-3)^{2}=k$. Given that the circle passes through A, show that $k=40$. Show that the circle also passes through B.
(iv) Find the x-coordinates of the points where this circle crosses the x-axis. Give your answers in surd form.

